
MATH20132 Calculus of Several Variables. 2020-21

Problems 1 : Limits

Questions 1 - 4 concern the limits of functions. The ε - δ definition of
a limit is that f : U ⊆ Rn → Rm has the limit b ∈ Rm at a ∈ U iff

∀ε > 0,∃ δ > 0 : ∀x ∈ Rn, 0 < |x− a| < δ =⇒ |f(x)− b| < ε.

1. By verifying the ε - δ definition of limit show that the scalar-valued func-
tion f : R2 → R, (x, y)T 7→ x+ y has limit 5 at a = (2, 3)T .

Hint At some point in verifying the definition you assume x = (x, y)T ∈ R2

satisfies 0 < |x− a| < δ. In particular this gives two pieces of information,
namely that |x− 2| < δ and |y − 3| < δ.

2. By verifying the ε - δ definition of limit show that the scalar-valued func-
tion g : R2 → R, (x, y)T 7→ xy + x+ y has limit 11 at a = (2, 3)T .

Hint Perhaps start by proving that

xy + x+ y − 11 = (x− 2) (y − 3) + 4 (x− 2) + 3 (y − 3) .

Deduce that if |x− 2| < δ, |y − 3| < δ and δ ≤ 1 then |xy − 6| < 8δ. Now
look at the definition of limit.

3. By verifying the ε - δ definition of limit show that the vector-valued func-
tion f : R2 → R2, given by(

x
y

)
7→

(
2x+ y

x− 3y

)
,

has limit (7,−7)T at a = (2, 3)T .

Note For practice I have asked you to verify the definition, not to use
any result from the course that would allow you to look at each component
separately.

4. By verifying the ε - δ definition of limit show that the vector-valued h :
R2 → R2, given by (

x
y

)
7→
(

x+ y
xy + x+ y

)
,
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has limit (5, 11)T at a = (2, 3)T .

Hint try to make use of the results used in Questions 1 and 2.

5. Assume f, g : D ⊆ Rn → R are scalar-valued functions with domain D
containing a deleted neighbourhood of a ∈ Rn. If limx→a f(x) = b ∈ R and
limx→a g(x) = c ∈ R prove that

i. limx→a (f(x) + g(x)) = b+ c,

ii. limx→a (f(x) g(x)) = bc and

iii. limx→a f(x) /g(x) = b/c provided c 6= 0.

Hint No new ideas are required, the proofs are identical to those for functions
of one variable.

The following is a corollary of Question 5.

6. Assume f : D ⊆ Rn → Rm and g : D ⊆ Rn → Rm are vector-valued
functions with domain D containing a deleted neighbourhood of a ∈ Rn. If
limx→a f(x) = b ∈ Rm and limx→a g(x) = c ∈ Rm prove that

lim
x→a

f(x) • g(x) = b • c.

Here • is the scalar or dot product of vectors.

Hint Make use of the previous question.

7. Lemma from Lecture Notes, limits along straight lines Assume
f : A ⊆ Rn → Rm is a vector-valued function with domain A containing a
deleted neighbourhood of a ∈ Rn. Assume limx→a f(x) = b. Then, for any
non-zero vector v ∈ Rn, the directional limit of f at a from the direction v
exists and further

lim
t→0+

f(a+tv) = b.

Prove this.

Hint This is a particular form of the Composite Rule for limits and so we
can follow the outline of all proofs of such results.

Start by considering the ε - δ definition of limx→a f(x) = b and

finish by verifying the ε - δ definition of limt→0+ f(a+tv) = b.

The result of the previous question can be written symbolically as

lim
x→a

f (x) = b =⇒ ∀v, lim
t→0+

f (a + tv) = b. (1)
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The contrapositive can be used to prove limits do not exist.

8. Define the function f : R2 → R by

f(x) =
x2 − y2

x2 + y2
for x = (x, y)T 6= 0 and f(0) = 0.

i. Find limt→0+ f(te1) and limt→0+ f(te2) where e1 = (1, 0)T and e2 =
(0, 1)T are the two standard basis vectors for R2.

ii. Prove that f does not have a limit at 0.

9. Lemma from lecture notes, limits along curves. Assume f : A ⊆
Rn → Rm where A contains a deleted neighbourhood of a ∈ Rn. Assume
limx→a f(x) = b exists. Assume g : (0, η)→ A \ {a} with limt→0+ g(t) = a.
Then

lim
t→0+

f(g(t)) = b.

Prove this.

Hint Question 7 is a special case of this result, so use the same method
of proof. Start by looking at the ε - δ definition of limx→a f(x) and finish
verifying the ε - δ definition of limt→0+ f(g(t)).

10. Define the function f : R2 → R by

f(x) =
(x2 − y)

2

x4 + y2
for x = (x, y)T 6= 0 and f(0) = 1.

i. Prove that limt→0+ f(tv) = 1 for every non-zero vector v.

Hint: write v = (h, k)T in order to get an expression for f(tv). Be
careful when k = 0.

ii. By considering the limit along the curve that is the image of g(t) =

(t, t2)
T

, prove that the function f does not have a limit at 0.

Hint Use the result of Question 9.

This is an example promised in the notes, of a function where the directional
limit exists and are equal for all directions but the limit does not exist. That
is

∀v, lim
t→0+

f (a + tv) = b 6=⇒ lim
x→a

f (x) = b.
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That is, the converse of (1) is false.

The following is a particularly important question. Make sure you at-
tempt all parts which illustrate points made in the lectures and are used in
later questions.

11. Find the following limits if they exist:

(i) lim
(x,y)→(0,0)

x4 + y4

x2 + y2
; (ii) lim

(x,y)→(0,0)

xy

x2 + y2
;

(iii) lim
(x,y)→(0,0)

x2y

x2 + y2
; (iv) lim

(x,y)→(0,0)

xy2

x2 + y4
;

(v) lim
(x,y)→(0,0)

xy2

x4 + y2
; (vi) lim

(x,y)→(0,0)

xy3

x2 + y6
.

Hint First try to show they have no limit by finding different directions (and
even different curves) along which the function has different limits. If you
cannot find any counterexamples try to prove the limit exists, normally by
applying the Sandwich Rule.

For an example of the limit of a vector -valued function we have

12. Find the limit, if it exists, of

lim
(x,y)→(0,0)

(
x2y + 1,

(xy)2

(xy)2 + (x− y)2

)T

.
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Additional Questions 1

13. By verifying the ε - δ definition show that the scalar-valued g : R3 → R,
(x, y)T 7→ x2y has limit 12 at a = (2, 3)T .

Hint Prove that

x2y−12 = (x− 2)2 (y − 3)+3 (x− 2)2+4 (x− 2) (y − 3)+12 (x− 2)+4 (y − 3) .

Deduce that if |x− 2|, |y − 3| < δ and δ ≤ 1 then∣∣x2y − 12
∣∣ < 24δ.

14 Verify that the vector-valued function(
x
y

)
7→

(
x+ y

x2y

)

has limit (5, 12)T at a = (2, 3)T .

Note You are not required to verify the definition.

15. In the lectures we need to use the Cauchy-Schwarz inequality |a • b| ≤
|a| |b| and the triangle inequality |c + d| ≤ |c| + |d|, for vectors a,b, c,d ∈
Rn. This question is a recap of proofs of these results which you should already
know.

i. Prove that if a, b, c ∈ R, a > 0 and ax2 + 2bx+ c ≥ 0 for all x ∈ R then
b2 ≤ ac. When do we have equality?

ii. Starting from the true statement that

0 ≤
n∑

i=1

(ai + bix)2

for all x ∈ R, deduce the Cauchy-Schwarz inequality |a • b| ≤ |a| |b| ,
written in the form(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

When do we have equality?

Hint Make use of Part i.
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iii. Triangle inequality. Prove that if c,d ∈ Rn then |c + d| ≤ |c|+ |d|.
Hint: make use of part iii.

iv. Prove that if c,d ∈ Rn then |c− d| ≥ ||c| − |d||.
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